Methoxyphenyldiazirine as Precursor to Methoxyphenylcarbene

Joanna Wtostowska, Robert A. Moss," Wenjeng Guo, and Ming Jing Chang

Department of Chemistry, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08903, U. S. A.

Reaction of bromo(pheny1)diazirine (2) with methoxide ion gives methoxy(pheny1)diazirine **(3),** which yields cyclopropanes **(4)** on photolysis in alkenes.

Methoxyphenylcarbene **(1)** is well known in its metal-carbene complex form. Cyclopropanations of electron-deficient alkenes have been achieved upon thermolyses of the pentacarbonyl Cr, Mo, and **W** carbene complexes; although mechanistic studies suggest that these cyclopropanations occur by ligand transfer within carbene-alkene-metal complexes, not *via* the free carbene.¹

The chemistry of the free carbene is problematical. Pyrolyses of the Na (or K) salt of PhC(OMe)=N-NHSO₂C₆H₄Me-p gave mainly PhC(OMe)=N-N=C(OMe)Ph.2 Cyclopropanes could not be isolated from similar pyrolyses in the presence of keten dialkylacetal or cyclohexene carbene traps,^{2,3} although pyrolysis in dec-1 -ene afforded **4** % of 1 -methoxy-1 -phenyl-2 n-octylcyclopropane isomers.³ On the other hand, cyclopropanation of dialkyl fumarates occurred readily on thermolysis in the presence of $PhC(OMe) = N-NHSO₂C₆H₄Me-*p*$ salts³ or of α , α -dimethoxybenzyltriphenylsilane.⁴ More recently, pyrolysis of PhC(OMe)=N-N=PPh₃ was shown to afford a complicated product mixture attributed to the carbene **(1).6**

We now report an unprecedented reaction of bromo- (pheny1)diazirine **(2)6** with methoxide ion, which affords **methoxy(pheny1)diazirine (3)** ; the latter yields cyclopropanes **(4)** upon photolysis in simple alkenes (Scheme 1).

A solution of **(2)** (10 mmol) in dimethylacetamide **(2** ml) was slowly added to a mechanically stirred solution of NaOMe (22 mmol) in dimethylacetamide-hexamethylphosphoric triamide
(30 ml; 1:1; DMA-HMPT) at -10 °C. After 1 h of stirring (30 ml; 1:1; DMA-HMPT) at -10 °C. After 1 h of stirring at -10 °C, the yellow-green methoxy(phenyl)diazirine (3) was obtained by pentane extraction $(3 \times 50 \text{ ml})$, drying (MgSO₄), and concentration *in vacuo* $(-10^{\circ}C)$ to 5 ml.[†] The i.r. spectrum (film, precooled plate) of a concentrated solution of (3) revealed a band at 1570 cm^{-1} (N=N), similar to those for (2) (1555 cm⁻¹) and chloro(phenyl)diazirine (1560 cm⁻¹);⁶ the $2000 - 2400$ cm⁻¹ region was blank, demonstrating the absence

of a diazoalkane. Its n.m.r. spectrum (CDCl₃; -10 °C; Me₄Si ref.) showed Me0 (6 **3.28)** and aromatic resonances. Its U.V. spectrum $(-30 \degree C;$ pentane) revealed maxima at 368 and **383** nm, with significant, though decreasing, absorption at *ca.* **450** nm. Sample instability prevented an accurate determination of *E* values. Chloro- and bromo-(pheny1)diazirines are reported to exhibit 'broad' u.v. absorptions with λ_{max} 388 nm.⁶

Photolysis **(G.** E. Sunlamp; Pyrex tube; 0 **"C;** 3 h) of **(3)** in ethanol gave benzaldehyde ethyl methyl acetal *(5)* in 26% yield based on the diazirine **(2).** Gas chromatography on **SE-30** at 115 °C gave a pure samplet with a definitive n.m.r. spectrum. Reaction of the carbene **(1)** with methanol affords benzaldehyde dimethyl acetal, an analogue of **(5).2**

⁻f The diazirine **(3)** is thermally and photochemically unstable; all operations must be performed at *<O "C* and in dim light. Reactions **of (3)** employed the concentrated pentane extract.

 $†$ A satisfactory elemental analysis was obtained.

Similar photolyses of **(3)** in isobutene, trans-but-2-ene, and trimethylethylene afforded the cyclopropanes **(4a-c)** \ddagger in 12, 7, and 15% yields, respectively, based on (2); Scheme 1. Although the yields are low, cyclopropanes were the major volatile

$PhCH(OMe)(OE)$ PhCH(OMe)C(Me₂)C(Me)=CH₂ **(5)** *(6)*

products in all cases,\$ and were readily purified by g.c. Structures were established by elemental analysis and n.m.r. spectroscopy. The cyclopropane **(4a),** for example, showed 6 (CC14; Me,Si) 0.72 (s, **3H,** CMe), **0.52, 0.62,** and **0.83, 0.93** (AB **q,** J 6 Hz, 2H, CH,), 1.30 (s, **3H,** CMe), **3.07 (s, 3H,** OMe), and **7.33** ('s', 5H, Ph). Reaction with tetramethylethylene did not afford the expected cyclopropane (4d). Instead, g.c. isolation (SE-30; **140** "C) gave a product tentatively assigned the alkene structure *(6),* which can be construed as a rearrangement product of **(4d).** The n.m.r. spectrum of the initial photolysis product indicated that (6) was already the major constituent; little (4d) could have been present.

There is direct spectroscopic evidence for formation of chlorophenylcarbene upon photolysis of phenylchlorodiazirine,⁸ so that it is reasonable to suggest that photolysis of **(3)** affords the carbene **(l),** the proximate precursor of the cyclopropanes **(4).** The mechanism of the conversion of the bromodiazirine **(2)** into the methoxydiazirine **(3),** however, is obscure. A simple $S_{\rm N}1$ process would require the intermediacy of a high-energy⁹ (phenyl)diazirinium cation. Though postulated,⁶ diazirinium ions have thus far eluded experimental detection.1° A pathway involving an intimate diazirinium cation-bromide ion pair is most likely for this unusual conversion.

We thank the National Science Foundation for financial support.

Received, 9th December 198I ; *Corn. I416*

References

- K. **H. Dotz** and E. 0. Fischer, *Chem. Ber.,* **1972, 105, 1356; E. 0.** Fischer, and **K. H.** Dotz, *ibid.,* **1972, 105, 3966;** M. D. Cooke and E. 0. Fischer, *J. Organomet. Chem.,* **1973,56,279.**
- **R.** M. McDonald and R. **A.** Krueger, *J. Org. Chern.,* **1966,31, 488.**
- **R. J.** Ctawford and R. Raap, *Can. J. Chem.,* **1965, 43, 356.**
- **A.** G. Brook and **P.** J. Dillon, *Can. J. Chem..* **1969. 47, 4347.**
- *5 G.* **B.** Merrill and **H.** Shechter, *Tetrahedron Lett.,* **1975; 4527.**
- *6* W. **H.** Graham, *J. Am. Chem.* **SOC., 1965, 87,4396.**
- **7** R. **A.** Moss and R. Gerstl, *Tetrahedron,* **1966,** *22,* **2637.**
- **8** N. **J.** Turro, J. **A.** Butcher, Jun., R. **A.** Moss, W. Guo, R. C. Munjal, and **M.** Fedorynski, *J. Am. Chem. Soc.,* **1980,** *102,* **7576.**
- **9** K. Krogh-Jespersen, *Tetrahedron Lett.,* **1980, 21, 4553.**
- **10** R. **A.** Moss, J. Wlostowska, W. Guo, **M.** Fedorynski, J. **P.** Springer, and J. M. Hirshfield, *J. Org. Chem.,* **1981, 46, 5048.**

^{\$}Identified volatile side products [yields based on **(2)** for the reaction with isobutene] included benzaldehyde **(2%),** benzaldehyde dimethyl acetal (5%), and methyl benzoate $\left(\langle 1\frac{1}{6}\rangle\right)$; these are attributable to reactions of (1).^{2,3,5} The phenylbromocarbene adduct of isobutene was absent (n.m.r.).7 Non-volatile side products included PhC(OMe)=N-N=C(OMe)Ph **(1 %)3** and the formal dimers of (1) $\left(\frac{<1}{<}\right)$.